Determination of the Absolute Configuration of Complex K[Co((S)-Pro)₂CO₃] by ¹H-NMR Spectroscopy

B. HÁJEK, Z. ŠRANK and D. SÝKOROVÁ

Department of Inorganic Chemistry, Institute of Chemical Technology, Prague, Czechoslovakia

Received July 16, 1982

¹H-NMR spectroscopy can be used for the determination of the absolute configuration of individual isomers of complex $K[Co((S)-Pro)_2CO_3]$, because reciprocal positions of rigid rings of coordinated amino acids are specifically determined in them. As a result of various dipole-dipole interactions between protons of these rings, there occurs a characteristic rise in the multiplicity of ¹H-NMR signals for the given isomer.

Preparation and study of isomers of the complex $K[Co((S)-Pro)_2CO_3]$ is described in our paper [1]. ¹H-NMR spectra of isolated isomers *cis*(N)*cis*(O) and *cis*(N)*trans*(O) have been measured on a Varian XL 100 instrument in D₂O. Chemical shift of the proton signals of amino acids was related to DSS as an internal standard.

With separate Λ - and Δ -cis(N)cis(O) and cis(N)trans(O) isomers K[Co((S)-Pro)₂CO₃] a consequent rise of multiplicity of ¹H-NMR signals was noted relative to the multiplicity of signals of non-coordinated (S)-proline (Fig. 1). Λ -cis(N)cis(O) isomer

- rise of multiplicity of signals 'b' caused by an expensive dipole-dipole interaction of protons CH₃ 'b' and CH₂' 'b'
- multiplicity of signals 'a' and 'c' remains preserved

Δ -cis(N)cis(O) isomer

 rise of multiplicity of signals 'b' and 'c' caused by a weaker dipole-dipole interaction of protons CH₂ 'b' and CH' 'c'

Λ -cis(N)trans(O) isomer

- no rise of multiplicity of signals occurs, because of pyrrolidin rings of bound aminoacids being oriented in such a way that dipole-dipole interaction of protons is quite negligible

Δ -cis(N)trans(O) isomer

an expressive rise of multiplicity of all signals occurs, while this effect is most expressive with signal 'b'. This rise can be moved by an expressive dipole-dipole interaction of protons of groups CH₂ 'a₂' with CH'₂ 'a₂', and further by interaction CH₂ 'a₁' with CH'₂ 'b' and weaker interaction CH₂ 'b' with CH' 'c'.

From our results it follows that the determination of an absolute configuration of isomers of complex $K[Co((S)-Pro)_2CO_3]$ must be an ¹H-NMR experiment, because the change of multiplicity ¹H-NMR signals of protons of amino acids is specific for their absolute configuration.

Reference

1 B. Hájek, D. Sýkorová and J. Chyba, Collection Czechoslov. Chem. Commun. (in press).

Fig. 1. 100 MHz ¹H-NMR spectrum of (S)-proline in D₂O.